Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Molecules ; 28(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37764491

RESUMO

Hispidulin is a natural bioactive flavonoid that has been studied for its potential therapeutic properties, including its anti-inflammatory, antioxidant, and neuroprotective effects. The aim of this study was to explore whether hispidulin could inhibit the endothelial inflammation triggered by Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS). The adhesion of monocytes to the vascular endothelium was evaluated through in vitro and ex vivo monocyte adhesion assays. We analyzed the migration of monocytes across the endothelial layer using a transmigration assay. The results showed that treatment with hispidulin decreased the P. gingivalis LPS-induced adhesion of monocytes to endothelial cells and their migration by suppressing the P. gingivalis LPS-triggered expression of intercellular adhesion molecule-1 (ICAM-1) through downregulating nuclear factor-қB (NF-қB). In addition, hispidulin inhibited P. gingivalis LPS-induced mitogen-activated protein kinases (MAPKs) and AKT in endothelial cells. Altogether, the results indicate that hispidulin suppresses the vascular inflammation induced by P. gingivalis LPS. Mechanistically, it prevents the adhesion of monocytes to the vascular endothelium and migration and inhibits NF-қB, MAPKs, and AKT signaling in endothelial cells.


Assuntos
Lipopolissacarídeos , Porphyromonas gingivalis , Humanos , Porphyromonas gingivalis/metabolismo , Lipopolissacarídeos/farmacologia , Células Endoteliais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Monócitos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , NF-kappa B/metabolismo
2.
J Dent Sci ; 18(3): 1177-1188, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37404665

RESUMO

Background: /purpose: Dental pulp plays an important role in the maintenance of tooth homeostasis and repair. The aging of dental pulp affects the functional life of the tooth owing to the senescence of dental pulp cells. Toll-like receptor 4 (TLR4) is involved in regulating cellular senescence in dental pulp. We have recently demonstrated that visfatin induces the senescence of human dental pulp cells (hDPCs). Here, we explored the association of TLR4 with visfatin signaling in cellular senescence in hDPCs. Materials and methods: mRNA levels were determined using reverse transcription polymerase chain reaction (PCR) and quantitative real time-PCR. Protein levels were determined using immunofluorescence staining and Western blot analysis. Gene silencing was performed using small interfering RNA. The degree of cellular senescence was measured by senescence-associated-ß-galactosidase (SA-ß-gal) staining. Oxidative stress was determined by measurement of NADP/NADPH levels and intracellular reactive oxygen species (ROS) levels. Results: Neutralizing anti-TLR4 antibodies or TLR4 inhibitor markedly blocked visfatin-induced hDPCs senescence, as revealed by an increase in the number of SA-ß-gal-positive hDPCs and upregulation of p21 and p53 proteins. Moreover, visfatin-induced senescence was associated with excessive ROS production; NADPH consumption; telomere DNA damage induction; interleukin (IL)-1ß, IL-6, IL-8, cyclooxygenase-2, and tumor necrosis factor-α upregulation; and nuclear factor-κB and mitogen-activated protein kinase activation. All of these alterations were attenuated by TLR4 blockade. Conclusion: Our findings indicate that TLR4 plays an important role in visfatin-induced senescence of hDPCs and suggest that the visfatin/TLR4 signaling axis can be a novel therapeutic target for the treatment of inflammaging-related diseases, including pulpitis.

3.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37373367

RESUMO

Bee venom is a traditional drug used to treat the nervous system, musculoskeletal system, and autoimmune diseases. A previous study found that bee venom and one of its components, phospholipase A2, can protect the brain by suppressing neuroinflammation and can also be used to treat Alzheimer's disease. Thus, new composition bee venom (NCBV), which has an increased phospholipase A2 content of up to 76.2%, was developed as a treatment agent for Alzheimer's disease by INISTst (Republic of Korea). The aim of this study was to characterize the pharmacokinetic profiles of phospholipase A2 contained in NCBV in rats. Single subcutaneous administration of NCBV at doses ranging from 0.2 mg/kg to 5 mg/kg was conducted, and pharmacokinetic parameters of bee venom-derived phospholipase A2 (bvPLA2) increased in a dose-dependent manner. Additionally, no accumulation was observed following multiple dosings (0.5 mg/kg/week), and other constituents of NCBV did not affect the pharmacokinetic profile of bvPLA2. After subcutaneous injection of NCBV, the tissue-to-plasma ratios of bvPLA2 for the tested nine tissues were all <1.0, indicating a limited distribution of the bvPLA2 within the tissues. The findings of this study may help understand the pharmacokinetic characteristics of bvPLA2 and provide useful information for the clinical application of NCBV.


Assuntos
Doença de Alzheimer , Venenos de Abelha , Fosfolipases A2 , Animais , Ratos , Doença de Alzheimer/tratamento farmacológico , Venenos de Abelha/enzimologia , Injeções Subcutâneas , Fosfolipases A2/uso terapêutico , Distribuição Tecidual
4.
Metabolites ; 13(5)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37233625

RESUMO

Humans are continuously exposed to benzisothiazolinone (BIT), which is used as a preservative, through multiple routes. BIT is known to be a sensitizer; in particular, dermal contact or aerosol inhalation could affect the local toxicity. In this study, we evaluated the pharmacokinetic properties of BIT in rats following various routes of administration. BIT levels were determined in rat plasma and tissues after oral inhalation and dermal application. Although the digestive system rapidly and completely absorbed orally administered BIT, it underwent severe first-pass effects that prevented high exposure. In an oral dose escalation study (5-50 mg/kg), nonlinear pharmacokinetic properties showed that Cmax and the area under the curve (AUC) increased more than dose proportionality. In the inhalation study, the lungs of rats exposed to BIT aerosols had higher BIT concentrations than the plasma. Additionally, the pharmacokinetic profile of BIT after the dermal application was different; continuous skin absorption without the first-pass effect led to a 2.13-fold increase in bioavailability compared with oral exposure to BIT. The [14C]-BIT mass balance study revealed that BIT was extensively metabolized and excreted in the urine. These results can be used in risk assessments to investigate the relationship between BIT exposure and hazardous potential.

5.
J Dent Sci ; 18(2): 577-585, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37021242

RESUMO

Background/purpose: Naringenin, a naturally occurring flavanone in citrus fruits, regulates bone formation by bone marrow-derived mesenchymal stem cells. The purpose of this study was to characterize the effects of naringenin on some biological behaviors of human dental pulp stem cells (HDPSCs). Materials and methods: HDPSCs were cultured in osteogenic differentiation medium and osteo/odontogenic differentiation and mineralization were analyzed by alkaline phosphatase (ALP) staining and Alizarin Red S (ARS) staining. The migration of HDPSCs was evaluated by transwell chemotactic migration assays and scratch wound healing migration assay. Using tooth slice/scaffold model, we assessed the in vivo odontogenic differentiation potential of HDPSCs. Results: We have demonstrated that naringenin increases the osteogenic/odontogenic differentiation of HDPSCs through regulation of osteogenic-related proteins and the migratory ability of HDPSCs through stromal cell derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4) axis. Moreover, naringenin promotes the expression of dentin matrix acidic phosphoprotein-1 (DMP-1) and dentin sialophosphoprotein (DSPP) in HDPSCs seeded on tooth slice/scaffolds that are subcutaneously implanted into immunodeficient mice. Conclusion: Our present study suggests that naringenin promotes migration and osteogenic/odontogenic differentiation of HDPSCs and may serve as a promising candidate in dental tissue engineering and bone regeneration.

6.
Front Digit Health ; 5: 1085602, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755566

RESUMO

Background: Encephalopathy is a severe co-morbid condition in critically ill patients that includes different clinical constellation of neurological symptoms. However, even for the most recognised form, delirium, this medical condition is rarely recorded in structured fields of electronic health records precluding large and unbiased retrospective studies. We aimed to identify patients with encephalopathy using a machine learning-based approach over clinical notes in electronic health records. Methods: We used a list of ICD-9 codes and clinical concepts related to encephalopathy to define a cohort of patients from the MIMIC-III dataset. Clinical notes were annotated with MedCAT and vectorized with a bag-of-word approach or word embedding using clinical concepts normalised to standard nomenclatures as features. Machine learning algorithms (support vector machines and random forest) trained with clinical notes from patients who had a diagnosis of encephalopathy (defined by ICD-9 codes) were used to classify patients with clinical concepts related to encephalopathy in their clinical notes but without any ICD-9 relevant code. A random selection of 50 patients were reviewed by a clinical expert for model validation. Results: Among 46,520 different patients, 7.5% had encephalopathy related ICD-9 codes in all their admissions (group 1, definite encephalopathy), 45% clinical concepts related to encephalopathy only in their clinical notes (group 2, possible encephalopathy) and 38% did not have encephalopathy related concepts neither in structured nor in clinical notes (group 3, non-encephalopathy). Length of stay, mortality rate or number of co-morbid conditions were higher in groups 1 and 2 compared to group 3. The best model to classify patients from group 2 as patients with encephalopathy (SVM using embeddings) had F1 of 85% and predicted 31% patients from group 2 as having encephalopathy with a probability >90%. Validation on new cases found a precision ranging from 92% to 98% depending on the criteria considered. Conclusions: Natural language processing techniques can leverage relevant clinical information that might help to identify patients with under-recognised clinical disorders such as encephalopathy. In the MIMIC dataset, this approach identifies with high probability thousands of patients that did not have a formal diagnosis in the structured information of the EHR.

7.
Transl Res ; 258: 35-46, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36805562

RESUMO

The objective of this study was to investigate whether CRISPR/Cas9-mediated suppression of A4GALT could rescue phenotype of Fabry disease nephropathy (FDN) using human induced pluripotent stem cells (hiPSCs) derived kidney organoid system. We generated FDN patient-derived hiPSC (CMC-Fb-002) and FD-specific hiPSCs (GLA-KO) by knock-out (KO) of GLA in wild-type (WT) hiPSCs using CRISPR/Cas9. We then performed A4GALT KO in both CMC-Fb-002 and GLA-KO to make Fb-002-A4GALT-KO and GLA/A4GALT-KO, respectively. Using these hiPSCs, we generated kidney organoids and compared alpha-galactosidase-A enzyme (α-GalA) activity, globotriaosylceramide (Gb-3) deposition, and zebra body formation under electron microscopy (EM). We also compared mRNA expression levels using RNA-seq and qPCR. Generated hiPSCs showed typical pluripotency markers without chromosomal disruption. Expression levels of GLA in CMC-Fb-002 and GLA-KO and expression levels of A4GALT in Fb-002-A4GALT-KO and GLA/A4GALT-KO were successfully decreased compared to those in WT-hiPSCs, respectively. Generated kidney organoids using these hiPSCs expressed typical nephron markers. In CMC-Fb-002 and GLA-KO organoids, α-GalA activity was significantly decreased along with increased deposition of Gb-3 in comparison with WT organoids. Intralysosomal inclusion body was also detected under EM. However, these disease phenotypes were rescued by KO of A4GALT in both GLA/A4GALT-KO and Fb-002-A4GALT-KO kidney organoids. RNA-seq showed increased expression levels of genes related to FDN progression in both GLA-mutant organoids compared to those in WT. Such increases were rescued in GLA/A4GALT-KO or Fb-002-A4GALT-KO organoids. CRISPR/Cas9 mediated suppression of A4GALT could rescue FDN phenotype. Hence, it can be proposed as a therapeutic approach to treat FDN.


Assuntos
Doença de Fabry , Células-Tronco Pluripotentes Induzidas , Nefropatias , Humanos , Doença de Fabry/genética , Doença de Fabry/metabolismo , Sistemas CRISPR-Cas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/metabolismo , Nefropatias/genética , Fenótipo , Organoides
8.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614189

RESUMO

RNA-mediated drugs are a rapidly growing class of therapeutics. Over the last five years, the list of FDA-approved RNA therapeutics has expanded owing to their unique targets and prolonged pharmacological effects. Their absorption, distribution, metabolism, and excretion (ADME) have important clinical im-plications, but their pharmacokinetic properties have not been fully understood. Most RNA therapeutics have structural modifications to prevent rapid elimination from the plasma and are administered intravenously or subcutaneously, with some exceptions, for effective distribution to target organs. Distribution of drugs into tissues depends on the addition of a moiety that can be transported to the target and RNA therapeutics show a low volume of distribution because of their molecular size and negatively-charged backbone. Nucleases metabolize RNA therapeutics to a shortened chain, but their metabolic ratio is relatively low. Therefore, most RNA therapeutics are excreted in their intact form. This review covers not only ADME features but also clinical pharmacology data of the RNA therapeutics such as drug-drug interaction or population pharmacokinetic analyses. As the market of RNA therapeutics is expected to rapidly expand, comprehensive knowledge will contribute to interpreting and evaluating the pharmacological properties.


Assuntos
Farmacocinética , Interações Medicamentosas , Fenômenos Químicos , Transporte Biológico
9.
Molecules ; 28(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36677902

RESUMO

Benzisothiazolinone (BIT), a biocide widely used as a preservative in household cleaning and personal care products, is cytotoxic to lung cells and a known skin allergen in humans, which highlights the importance of assessing its toxicity and pharmacokinetics. In this study, a simple, sensitive, and accurate LC−MS/MS method for the quantification of BIT in rat plasma, urine, or tissue homogenates (50 µL) using phenacetin as an internal standard was developed and validated. Samples were extracted with ethyl acetate and separated using a Kinetex phenyl−hexyl column (100 × 2.1 mm, 2.6 µm) with isocratic 0.1% formic acid in methanol and distilled water over a run time of 6 min. Positive electrospray ionization with multiple reaction monitoring transitions of m/z 152.2 > 134.1 for BIT and 180.2 > 110.1 for phenacetin was used for quantification. This assay achieved good linearity in the calibration ranges of 2−2000 ng/mL (plasma and urine) and 10−1000 ng/mL (tissue homogenates), with r ≥ 0.9929. All validation parameters met the acceptance criteria. BIT pharmacokinetics was evaluated via an intravenous and dermal application. This is the first study that evaluated BIT pharmacokinetics in rats, providing insights into the relationship between BIT exposure and toxicity and a basis for future risk assessment studies in humans.


Assuntos
Desinfetantes , Espectrometria de Massas em Tandem , Humanos , Ratos , Animais , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Fenacetina , Reprodutibilidade dos Testes
10.
BMB Rep ; 56(2): 160-165, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36443004

RESUMO

Vascular calcification is common in cardiovascular diseases including atherosclerosis, and is associated with an increased risk of pathological events and mortality. Some semaphorin family members play an important role in atherosclerosis. In the present study, we show that Semaphorin 4D/Sema4D and its Plexin-B1 receptor were significantly upregulated in calcified aorta of a rat chronic kidney disease model. Significantly higher Sema4D and Plexin-B1 expression was also observed during inorganic phosphate-induced calcification of vascular smooth muscle cells. Knockdown of Sema4D or Plexin-B1 genes attenuated both the phosphate-induced osteogenic phenotype of vascular smooth muscle cells, through regulation of SMAD1/5 signaling, as well as apoptosis of vascular smooth muscle cells, through modulation of the Gas6/Axl/Akt survival pathway. Taken together, our results offer new insights on the role of Sema4D and Plexin-B1 as potential therapeutic targets against vascular calcification. [BMB Reports 2023; 56(3): 160-165].


Assuntos
Semaforinas , Calcificação Vascular , Ratos , Animais , Receptores de Superfície Celular/metabolismo , Músculo Liso Vascular/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Semaforinas/farmacologia
11.
Curr Issues Mol Biol ; 44(8): 3324-3334, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35892715

RESUMO

Oral cancer is a malignant neoplasm of oral cavity. It accounts for approximately 5% of all malignant tumors. Approximately 97% of all oral cancers are squamous cell carcinomas, followed by adenocarcinomas, and rarely malignant melanomas. It occurs particularly in males (twice as common in males than in females) of middle age (above 40 years). Agrimonia pilosa Ledeb. has traditionally been known for its effective antitumor activity and is currently used in China for cancer therapy. A. pilosa Ledeb. has been traditionally used for the treatment of abdominal pain, sore throat, headache, blood discharge, parasitic infections, and eczema in Korea and other Asian countries. Most studies on A. pilosa Ledeb. are related to the leaves and a few investigated the roots of the plant. However, detailed mechanisms of antitumor activity of A. pilosa Ledeb. have not been fully elucidated. Furthermore, to date, there have been no reports on the antitumor effect of A. pilosa Ledeb. in oral squamous cells. In this study, we used proteomic technology to observe changes in proteins related to anticancer activity of A. pilosa Ledeb. and identified target proteins among altered proteins to reveal the underlying mechanism of action.

12.
Curr Issues Mol Biol ; 44(5): 2300-2308, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35678685

RESUMO

Psoralea corylifolia L. (P. corylifolia) has been used as an oriental phytomedicine to treat coldness of hands and feet in bone marrow injury. Hydroxyapatite is usually used for tooth regeneration. In this study, the role of P. corylifolia and bakuchiol, a compound originated from P. corylifolia as differentiation-inducing substances for tooth regeneration, was determined by monitoring odontogenic differentiation in human dental pulp stem cells (hDPSCs). We confirmed that P. corylifolia extracts and bakuchiol increased the odontogenic differentiation of hDPSCs. In addition, the expression of the odontogenic differentiation marker genes alkaline phosphatase (APL), Runt-related transcription factor 2 (RUNX-2), osteocalcin (OC), and dentin matrix acidic phosphoprotein-1 (DMP-1) was proved by real-time polymerase chain reaction, and protein expression of dentin matrix acidic phosphoprotein-1 (DMP-1) and dentin sialophosphoprotein (DSPP) was proved by western blotting. Further, by confirming the increase in small mothers against decapentaplegia (SMAD) 1/5/8 phosphorylation, the SMAD signaling pathway was found to increase the differentiation of odontoblasts. This study confirmed that P. corylifolia L. extracts and bakuchiol alone promote odontogenic differentiation in hDPSCs. These results suggest that bakuchiol from P. corylifolia is responsible for odontogenic differentiation, and they encourage future in vivo studies on dentin regeneration.

13.
J Med Food ; 24(11): 1145-1152, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34792394

RESUMO

We aimed to analyze the effects and explore the molecular mechanisms of a natural herb mixture extract (NME) on osteoblasts during differentiation in human bone marrow-derived mesenchymal stem cells (hBMSCs). We tried to confirm the regulation of osteogenic differentiation during NME treatment. Alkaline phosphatase assay and Alizarin red S staining were performed to evaluate the regulation of osteogenic differentiation. Real-time polymerase chain reaction was performed to analyze the expression of osteoblast maker genes, and Western blot was used to verify the signaling pathway. Signaling pathway conformation, selective bone morphogenetic protein receptor inhibitor, and dorsomorphin homolog 1 were used as pretreatments before inducing osteogenic differentiation. We determined that MME (natural herb mixture extract) was a safe material and significantly increased osteoblast differentiation and that SMAD phosphorylation is a key signaling pathway that regulates osteogenic differentiation in hBMSCs.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Medula Óssea , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Humanos , Extratos Vegetais/farmacologia
14.
BMB Rep ; 54(11): 569-574, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34674793

RESUMO

Vascular calcification is the heterotopic accumulation of calcium phosphate salts in the vascular tissue and is highly correlated with increased cardiovascular morbidity and mortality. In this study, we found that the expression of neuromedin B (NMB) and NMB receptor is upregulated in phosphate-induced calcification of vascular smooth muscle cells (VSMCs). Silencing of NMB or treatment with NMB receptor antagonist, PD168368, inhibited the phosphate-induced osteogenic differentiation of VSMCs by inhibiting Wnt/ß-catenin signaling and VSMC apoptosis. PD168368 also attenuated the arterial calcification in cultured aortic rings and in a rat model of chronic kidney disease. The results of this study suggest that NMB-NMB receptor axis may have potential therapeutic value in the diagnosis and treatment of vascular calcification. [BMB Reports 2021; 54(11): 569-574].


Assuntos
Cálcio/metabolismo , Neurocinina B/análogos & derivados , Osteogênese , Fosfatos/toxicidade , Receptores da Bombesina/metabolismo , Insuficiência Renal Crônica/complicações , Calcificação Vascular/patologia , Animais , Diferenciação Celular , Células Cultivadas , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Neurocinina B/genética , Neurocinina B/metabolismo , Ratos , Ratos Wistar , Receptores da Bombesina/genética , Calcificação Vascular/etiologia , Calcificação Vascular/metabolismo , Via de Sinalização Wnt
15.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203237

RESUMO

In the past decade, immunotherapies have been emerging as an effective way to treat cancer. Among several categories of immunotherapies, immune checkpoint inhibitors (ICIs) are the most well-known and widely used options for cancer treatment. Although several studies continue, this treatment option has yet to be developed into a precise application in the clinical setting. Recently, omics as a high-throughput technique for understanding the genome, transcriptome, proteome, and metabolome has revolutionized medical research and led to integrative interpretation to advance our understanding of biological systems. Advanced omics techniques, such as multi-omics, single-cell omics, and typical omics approaches, have been adopted to investigate various cancer immunotherapies. In this review, we highlight metabolomic studies regarding the development of ICIs involved in the discovery of targets or mechanisms of action and assessment of clinical outcomes, including drug response and resistance and propose biomarkers. Furthermore, we also discuss the genomics, proteomics, and advanced omics studies providing insights and comprehensive or novel approaches for ICI development. The overview of ICI studies suggests potential strategies for the development of other cancer immunotherapies using omics techniques in future studies.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Animais , Genômica/métodos , Humanos , Metabolômica/métodos , Microbiota/fisiologia , Proteômica/métodos
16.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808194

RESUMO

Metformin is the first-line pharmacotherapy for treating type 2 diabetes mellitus (T2DM); however, its mechanism of modulating glucose metabolism is elusive. Recent advances have identified the gut as a potential target of metformin. As patients with metabolic disorders exhibit dysbiosis, the gut microbiome has garnered interest as a potential target for metabolic disease. Henceforth, studies have focused on unraveling the relationship of metabolic disorders with the human gut microbiome. According to various metagenome studies, gut dysbiosis is evident in T2DM patients. Besides this, alterations in the gut microbiome were also observed in the metformin-treated T2DM patients compared to the non-treated T2DM patients. Thus, several studies on rodents have suggested potential mechanisms interacting with the gut microbiome, including regulation of glucose metabolism, an increase in short-chain fatty acids, strengthening intestinal permeability against lipopolysaccharides, modulating the immune response, and interaction with bile acids. Furthermore, human studies have demonstrated evidence substantiating the hypotheses based on rodent studies. This review discusses the current knowledge of how metformin modulates T2DM with respect to the gut microbiome and discusses the prospect of harnessing this mechanism in treating T2DM.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/microbiologia , Microbioma Gastrointestinal/fisiologia , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Ácidos e Sais Biliares/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/imunologia , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Hipoglicemiantes/farmacologia , Metformina/farmacologia
17.
Antioxidants (Basel) ; 10(2)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578781

RESUMO

FK866 possesses various functional properties, such as anti-angiogenic, anti-cancer, and anti-inflammatory activities. We previously demonstrated that premature senescence of human dental pulp cells (hDPCs) was induced by hydrogen peroxide (H2O2). The present study aimed to investigate whether H2O2-induced premature senescence of hDPCs is affected by treatment with FK866. We found that FK866 markedly inhibited the senescent characteristics of hDPCs after exposure to H2O2, as revealed by an increase in the number of senescence-associated ß-galactosidase (SA-ß-gal)-positive hDPCs and the upregulation of the p21 and p53 proteins, which acts as molecular indicators of cellular senescence. Moreover, the stimulatory effects of H2O2 on cellular senescence are associated with oxidative stress induction, such as excessive ROS production and NADPH consumption, telomere DNA damage induction, and upregulation of senescence-associated secretory phenotype factors (IL-1ß, IL-6, IL-8, COX-2, and TNF-α) as well as NF-κB activation, which were all blocked by FK866. Thus, FK866 might antagonize H2O2-induced premature senescence of hDPCs, acting as a potential therapeutic antioxidant by attenuating oxidative stress-induced pathologies in dental pulp, including inflammation and cellular senescence.

18.
Korean J Intern Med ; 36(4): 949-961, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430574

RESUMO

BACKGROUND/AIMS: Coenzyme Q10 (CoQ10), is a promising antioxidant; however, low bioavailability owing to lipid-solubility is a limiting factor. We developed water-soluble CoQ10 (CoQ10-W) and compared its effects with conventional lipid-soluble CoQ10 (CoQ10-L) in an experimental model of chronic tacrolimus (Tac) nephropathy. METHODS: CoQ10-W was developed from a glycyrrhizic-carnitine mixed layer CoQ10 micelle based on acyltransferases. Chronic nephropathy was induced in rats with 28-day Tac treatment; they were concomitantly treated with CoQ10-L or CoQ10-W. CoQ10 level in plasma and kidney were measured using liquid chromatography-mass spectrometry. CoQ10-W and CoQ10-L effects on Tac-induced nephropathy were assessed in terms of renal function, histopathology, oxidative stress, and apoptotic cell death. Their effects on cell viability and reactive oxygen species (ROS) production were assessed in cultured proximal tubular cells, human kidney 2 (HK-2) cells. RESULTS: The plasma CoQ10 level was significantly higher in the CoQ10-W group than in the CoQ10-L group. Tac treatment caused renal dysfunction, typical pathologic lesions, and oxidative stress markers. Serum creatinine was restored in the Tac + CoQ10-L or CoQ10-W groups compared with that in the Tac group. CoQ10-W administration reduced oxidative stress and apoptosis markers. Mitochondrial ultrastructure assessment revealed that the addition of CoQ10-L or CoQ10-W with Tac increased mitochondrial size and number than Tac treatment alone. In vitro investigations revealed that both CoQ10-L and CoQ10-W improved cell viability and reduced ROS production in the Tac-induced HK-2 cell injury. CONCLUSION: CoQ10-W has a better therapeutic effect in Tac-induced renal injury than conventional CoQ10-L, possibly associated with improved CoQ10 bioavailability.


Assuntos
Tacrolimo , Água , Animais , Lipídeos , Ratos , Espécies Reativas de Oxigênio , Tacrolimo/toxicidade , Ubiquinona/análogos & derivados
19.
Am J Chin Med ; 48(8): 1875-1893, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33308100

RESUMO

Inflammation regulation is essential for maintaining healthy functions and normal homeostasis of the body. Porphyromonas gingivalis (P. gingivalis) is a gram-negative anaerobic bacterium and a major pathogen that causes oral inflammation and other systemic inflammations. This study aims to examine the anti-inflammatory effects of Agrimonia pilosa Ledeb root extracts (APL-ME) in Porphyromonas gingivalis LPS-induced RAW 264.7 cells and find anti-inflammatory effect compounds of APL-ME. The anti-inflammatory effects of APL-ME were evaluated anti-oxidant activity, cell viability, nitrite concentration, pro-inflammatory cytokines (interleukin-1[Formula: see text], interleukin-6, tumor necrosis factor (TNF)-[Formula: see text], and anti-inflammatory cytokine (interleukin-10 (IL-10)). Also, Inflammation related genes and proteins, cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), expression were decreased by APL-ME and mitogen-activated protein kinase (MAPK) signaling proteins expression was regulated by APL-ME. Liquid chromatography-mass spectrometer (LC/MS)-MS analysis results indicated that several components were detected in APL-ME. Our study indicated that APL-ME suppressed nitrite concentrations, pro-inflammatory cytokines such as IL-1[Formula: see text], IL-6 and TNF-[Formula: see text] in P. gingivalis LPS induced RAW 264.7 cells. However, IL-10 expression was increased by ALP-ME. In addition, protein expressions of COX-2 and iNOS were inhibited APL-ME extracts dose-dependently. According to these results, APL-ME has anti-inflammatory effects in P. gingivalis LPS induced RAW 264.7 cells.


Assuntos
Agrimonia/química , Anti-Inflamatórios , Inflamação/etiologia , Inflamação/genética , Lipopolissacarídeos/efeitos adversos , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Raízes de Plantas/química , Animais , Antioxidantes , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Periodontite/tratamento farmacológico , Periodontite/etiologia , Extratos Vegetais/isolamento & purificação , Porphyromonas gingivalis , Células RAW 264.7
20.
Cells ; 9(12)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33334022

RESUMO

Accumulating evidence suggests a link between periodontal disease and cardiovascular diseases. Vascular calcification is the pathological precipitation of phosphate and calcium in the vasculature and is closely associated with increased cardiovascular risk and mortality. In this study, we have demonstrated that the infection with Porphyromonas gingivalis (P. gingivalis), one of the major periodontal pathogens, increases inorganic phosphate-induced vascular calcification through the phenotype transition, apoptosis, and matrix vesicle release of vascular smooth muscle cells. Moreover, P. gingivalis infection accelerated the phosphate-induced calcium deposition in cultured rat aorta ex vivo. Taken together, our findings indicate that P. gingivalis contributes to the periodontal infection-related vascular diseases associated with vascular calcification.


Assuntos
Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/microbiologia , Miócitos de Músculo Liso/patologia , Fosfatos/efeitos adversos , Porphyromonas gingivalis/fisiologia , Calcificação Vascular/microbiologia , Animais , Aorta/patologia , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Transdiferenciação Celular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Masculino , Miócitos de Músculo Liso/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA